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A primary goal for cosmology and particle physics over the coming decade will be to unravel
the nature of the dark energy that drives the accelerated expansion of the Universe. In par-
ticular, determination of the equation-of-state of dark energy, w ≡ p/ρ, and its time variation,
dw/dz, will be critical for developing theoretical understanding of the new physics behind this
phenomenon. Type Ia supernovae (SNe) and cosmic microwave background (CMB) anisotropy
are each sensitive to the dark energy equation-of-state. SNe alone can determine w(z) with
some precision, while CMB anisotropy alone cannot because of a strong degeneracy between
the matter density ΩM and w. However, we show that the Planck CMB mission can signif-
icantly improve the power of a deep SNe survey to probe w and especially dw/dz. Because
CMB constraints are nearly orthogonal to SNe constraints in the ΩM–w plane, for constraining
w(z) Planck is more useful than precise determination of ΩM . We discuss how the CMB/SNe
complementarity impacts strategies for the redshift distribution of a supernova survey to de-
termine w(z) and conclude that a well-designed sample should include a substantial number of
supernovae out to redshifts z ∼ 2.

I. INTRODUCTION

Recent observations of Type Ia supernovae (SNe) have
provided direct evidence that the Universe is accelerat-
ing [1, 2], indicating the existence of a nearly uniform
dark-energy component with negative effective pressure,
w ≡ p/ρ < −1/3. Further evidence for dark energy
comes from recent cosmic microwave background (CMB)
anisotropy measurements pointing to a spatially flat, crit-
ical density Universe, with Ω0 = 1, combined with a num-
ber of indications that the matter density ΩM ' 0.3 [3];
the ‘missing energy’ must also have sufficiently negative
pressure in order to allow time for large-scale structure
to form [4]. Together, these two lines of evidence indi-
cate that dark energy composes 70% of the energy den-
sity of the Universe and has equation-of-state parameter
w < −(0.5 − 0.6) [5]. Determining the nature of dark
energy, in particular its equation-of-state, is a critical
challenge for physics and cosmology.

At present, particle physics theory provides little to no
guidance about the nature of dark energy. A cosmological
constant—the energy associated with the vacuum—is the
simplest but not the only possibility; in this case, w = −1
and is time independent, and the dark energy density is
spatially constant. Unfortunately, theory has yet to pro-
vide a consistent description of the vacuum: the energy
density of the vacuum, at most 10−10 eV4, is at least 57

orders of magnitude smaller than what one expects from
particle physics—the cosmological constant problem [6].
In recent years, a number of other dark energy models
have been explored, from slowly rolling, ultra-light scalar
fields to frustrated topological defects [7]. These models
predict that w 6= −1, that w may evolve in time, and that
there may be small spatial variations in the dark energy
density (of less than a part in 105 on scales ∼ H−1

0 [8]). In
all models proposed thus far dark energy can be charac-
terized by its equation-of-state w. Measuring the present
value of w and its time variation will provide crucial clues
to the underlying physics of dark energy.

As far as we know, dark energy can only be probed
directly by cosmological measurements, although it is
possible that laboratory experiments could detect other
physical effects associated with dark energy, e.g., a new
long-range force arising from an ultra-light scalar field [9].
Dark energy affects the expansion rate of the Universe
and thereby influences cosmological observables such as
the distance vs. redshift, the linear growth of density per-
turbations, and the cosmological volume element (see,
e.g., [10]). Standard candles such as Type Ia supernovae
offer a direct means of mapping out distance vs. redshift,
while the CMB anisotropy can be used to accurately de-
termine the distance to one redshift, the last scattering
epoch (zLS ' 1100). Because they measure distances at
such different redshifts, the SNe and CMB measurements
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have complementary degeneracies in the ΩM–w plane,
as has been emphasized previously [10]. More recently,
Spergel & Starkman [11] have suggested that this com-
plementarity argues for using supernovae at relatively low
redshift, z ∼ 0.4, to most efficiently probe dark energy.
In so doing, they used a highly simplified model which
did not consider a spread of SNe in redshift, systematic
error, possible evolution of w, or the finite precision with
which planned CMB missions can actually constrain ΩM

and w.
By including these “real-world” effects, this paper clar-

ifies the complementarity of the CMB and SNe and ex-
plores strategies for best utilizing it in SNe surveys to
probe the properties of dark energy. We show that dark
energy-motivated supernova surveys should target SNe
over a broad range of redshifts out to z ∼ 2, and that
CMB/SNe complementarity in fact strengthens the case
for deep SNe surveys.

II. HOW SUPERNOVAE AND THE CMB
PROBE DARK ENERGY

Supernovae and the CMB anisotropy probe dark en-
ergy in different ways and at different epochs. However,
both do so through the effect of dark energy on the co-
moving distance vs. redshift relation, r(z). For a spatially
flat Universe and constant w:

H0r(z) =

∫ z

0

dz

H(z)/H0 (1)

(H/H0)2 = ΩM (1 + z)3 + (1− ΩM )(1 + z)3(1+w)

where ΩM is the present fraction of the energy density
contributed by non-relativistic matter. This relation is
easily generalized to non-constant w and a curved Uni-
verse [10]; for notational simplicity we write this and suc-
ceeding formulae in terms of constant w, though we gen-
eralize them to the evolving case in our analysis. It is
because H0r(z) depends upon only two quantities, ΩM

and w, that prior information about ΩM (or two inde-
pendent combinations of ΩM and w) has such potential
to improve the efficacy of a cosmological probe of dark
energy based upon H0r(z).

CMB experiments can determine the positions and
heights of the acoustic peaks in the temperature
anisotropy angular power spectrum to high accuracy.
The positions of the acoustic peaks in angular multi-
pole space depend upon the physical baryon and matter
densities ΩBh

2 and ΩMh
2, on ΩM , w, and to a lesser

extent other cosmological parameters (e.g., [10, 14]).
Anisotropy measurements from the Planck [15] mission,
planned for launch later in the decade, should determine
the positions of the peaks to better than 0.1%; the heights
of the peaks will determine ΩMh

2 and ΩBh
2 (and other

cosmological parameters) to roughly percent precision
[16]. Together, these measurements should constrain a
combination of ΩM and w alone (e.g., [10, 11]) to about

10% precision. In particular, in the vicinity of the fiducial
values w0 = −1 and ΩM0 = 0.3, the combination

D ≡ ΩM − 0.94 ΩM0(w − w0)
(2)

≈ ΩM − 0.28(1 + w) = 0.3

will be determined to about σD ' ±0.03(ΩM0/0.3) (this
result follows directly from Eq. 18 of Ref. [10] by setting
∆l/l = ∆Ω0/Ω0 = 0). The resulting 68% CL error el-
lipse in the ΩM–w plane predicted for Planck is shown
in Fig. 1. Polarization information could in principle im-
prove the precision with which D is determined by about
50% [17], absent problems with foregrounds or the polar-
ization measurements themselves.

The MAP CMB mission [18] currently underway
should determine D to a precision that is about 10 times
worse than Planck, assuming temperature anisotropy in-
formation alone. This constraint is too weak to usefully
complement the SNe measurements. However, if MAP
polarization measurements are successful, this constraint
could be improved by about a factor of two [17]; we dis-
cuss the potential impact of MAP further in Sec. IV A 3.

As an aside, we note that the physical baryon and mat-
ter densities do not directly impact the determination
of the properties of dark energy. Rather, together with
other cosmological measurements, they can be used to
determine ΩM . In the following Sections we illustrate
how independent knowledge of ΩM can improve the de-
termination of w.

Measurements of the energy fluxes and redshifts of
Type Ia supernovae provide an estimate of the lumi-
nosity distance as a function of redshift, dL ≡ (1 +
z)r(z). As an example of a supernova survey, the Su-
pernova/Acceleration Probe (SNAP) [19] is a proposed
space-based telescope to observe ∼ 3000 SNe Ia out to
redshift z ∼ 1.7, specifically designed to probe dark en-
ergy. To illustrate the essential principles for such a sur-
vey, though not all the details, we make the simplifying
assumption that SNe Ia are nearly standard candles (af-
ter correction for the observed correlation between light-
curve decline rate and peak luminosity [20]). With this
assumption, the mean peak energy flux from a supernova
at redshift z is:

F (z) =
C10−0.4M

4πd2
L

=
(1010C/4π)10−0.4M

H2
0d

2
L

=

(3)

(1010C/4π)10−0.4M

(1 + z)2

[∫ z

0

dz√
ΩM(1 + z)3 + (1− ΩM )(1 + z)3(1+w)

]2

where C = 3.02× 1035 erg sec−1 is an unimportant con-
stant, M is the mean absolute peak magnitude of a Type
Ia supernova, and M = M − 5 log(H0) + 25, with dis-
tances measured in Mpc.

It is important to note several things from Eq. (3).
First the energy flux at fixed H0dL depends only upon



3

0 0.1 0.2 0.3 0.4 0.5

Ω
M

-1

-0.8

-0.6

w

PLANCK
SNe, z=0.3
SNe, z=1.0
SNe, z=2.0

FIG. 1: 68% CL “error ellipses” in the ΩM–w plane for
3000 SNe all at a single redshift z = 0.3, 1.0, or 2.0, and
for the Planck CMB anisotropy measurement (without
polarization), assuming a fiducial model with ΩM0 = 0.3
and w0 = −1. Because observations at a single redshift
cannot break the parameter degeneracies, the ellipses do
not close. As expected, the CMB constraint lies along
ΩM ' 0.3 + 0.28(1 + w). At higher z, the SNe ellipses
become narrower but less orthogonal (complementary)
to the CMB ellipse. Note, a matter-density prior corre-
sponds to a vertical stripe, which is less orthogonal to
the SNe ellipses than the CMB ellipse. This is the basic
reason why a CMB prior is more effective than a matter-
density prior.

the combinationM and not upon M and H0 separately.
Thus, the cosmological parameters ΩM and w can be
determined by measuring ratios of fluxes at different red-
shifts, which are independent of M, and so M is some-
times referred to as a nuisance parameter and can be
easily marginalized over. Second, since H0dL → z for
z → 0, low-redshift supernovae can be used to determine
M,

z2F (z)→ (1010C/4π)10−0.4M as z → 0. (4)

For example, a sample of 300 low-redshift supernovae
(e.g., as will be targeted by the Nearby SN Factory
[21]) could be used to pin down M to a precision of
±(0.01−0.02). Finally, an absolute calibration of nearby
SNe Ia luminosities by another reliable distance indica-
tor (e.g., using Cepheid variables to determine distances
to galaxies that host SNe Ia [22]) can determine M ; to-
gether, M and M then fix the Hubble constant, but we
emphasize that this is not needed to probe dark energy.

For a survey of SNe Ia, the likelihood function for
the three parameters the supernova energy flux depends

upon is given by

LSNe(ΩM , w,M) ∝ Πi exp

(
− [Fi − F (zi)]

2

2σ2
i

)
(5)

where zi are the redshifts of the supernovae, Fi are their
measured fluxes, and σi are their measurement uncer-
tainties (which also includes any random intrinsic spread
in peak SNe Ia luminosities).

Unlike the CMB, which probes the angular diameter
distance at a single, fixed redshift zLS , the efficacy of SNe
for determining w depends upon the redshift distribution
of the supernovae. As a first example, Fig. 1 shows how
well 3000 supernovae at a single redshift could constrain
ΩM and w, assuming a random flux error of 0.15 mag
per supernova. Because the sensitivity of the comoving
distance r(z) to the dark energy equation-of-state (e.g.,
as measured by dr/dw) increases with redshift, the ellipse
shrinks for SNe at higher redshift [10].

While Fig. 1 displays important trends, we note that
a realistic survey would not target SNe all at one red-
shift. Such a delta-function redshift distribution is very
much less than optimal for constraining w (as we show in
Sec. IV A) and would be very inefficient, since large num-
bers of discovered SNe would have to be discarded. More
importantly, a broad distribution of SNe redshifts is cru-
cial for addressing systematic/evolutionary trends in the
SNe population, which must be under control if SNe (or
anything else) are to be valid probes of dark energy.

In addition, there is much more to studying dark en-
ergy than determining the average value of w in the most
efficient manner. Constraining the time variation of the
equation-of-state is critical for understanding the nature
of dark energy. The CMB has no sensitivity to evolution
of w; SNe can probe time variation of w, and a broad
distribution of SNe redshifts (out to z ∼ 2) is required
to achieve it, as we show below. In Sec. IV we discuss
strategies for the distribution of SNe redshifts and re-
sults for some plausible examples. Finally, determining
cosmological parameters (here ΩM and w) by two very
different techniques has the virtue of providing consis-
tency checks on the framework of dark energy as well as
the Friedmann-Robertson-Walker cosmology [12, 13].

III. CMB/SNE COMPLEMENTARITY

Some trends in the CMB/SNe complementarity are il-
lustrated in Fig. 1. For the fiducial model (w0 = −1,
ΩM0 = 0.3), the Planck error ellipse in the ΩM–w
plane is approximately oriented along the line ΩM '
0.3 + 0.28(1 + w), as indicated by Eq. (2). By contrast,
the error ellipse for 3000 SNe at fixed redshift has neg-
ative slope in this plane; with increasing redshift it ro-
tates toward ΩM = const, and its width narrows. The
reason for the rotation is simple: at high redshift, matter
becomes more dynamically important than dark energy,
and the SNe are therefore probing the matter density.
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While the width of the SNe ellipse shrinks with increasing
redshift, it becomes less complementary with the CMB
ellipse. Fig. 1 also makes it clear why CMB anisotropy is
more complementary than the matter density informa-
tion: the matter density prior, which corresponds to a
vertical stripe, is less orthogonal to the SNe ellipse.

To be quantitative, it is useful to write down the joint
likelihood function:

Ljoint = LSNe ×LCMB × Lother. (6)

The CMB likelihood function can be approximated as

LCMB = LCMB,0(ΩM , w)× exp

[
− (ρB − ρB0)2

2σ2
ρB

]

(7)

× exp

[
− (ρM − ρM0)2

2σ2
ρM

]

where

LCMB,0 ∝ exp

[
(D −D0)2

2σ2
D

]
, (8)

D = ΩM − 0.28(1 + w), D0 ' 0.3 is the fiducial value of
D, σD ' 0.1D0 is the projected accuracy for Planck1,
ρB = 1.88 ΩBh

2 × 10−29 g cm−3, ρM = 1.88 ΩMh
2 ×

10−29 g cm−3, ρB0 is the fiducial value of the baryon den-
sity, and ρM0 is the fiducial value of the matter density.

As noted in Sec. II, the CMB determination of the
baryon and matter densities is not directly useful for con-
straining dark energy: when the joint likelihood function
is marginalized over the matter and baryon densities to
obtain the one-dimensional probability distribution for
w, the integrations over ΩBh

2 and ΩMh
2 are trivial. On

the other hand, if we can obtain information about M
(from non-SNe distance measurements) and M (from
low-redshift SNe) and thereby (or otherwise) constrain
H0, then the CMB determination of ΩMh

2 constrains
ΩM as well, which would directly impact the joint deter-
mination of w. Of course, any other external determi-
nation of ΩM would have the same effect; later, we will
discuss how various ΩM priors affect the determination
of w.

Assuming no information about M (or equivalently
H0), the joint likelihood function becomes

Ljoint(ΩM , w) = LCMB,0 ×LSNe (9)

From this function, we obtain one-dimensional probabil-
ity distributions for w by marginalizing over ΩM . As a
first case, we again assume a baseline sample of 3000 SNe
all at one redshift, with a random flux error of 0.15 mag
per supernova. In Fig. 2, we show the effect of includ-
ing CMB or ΩM information in the determination of the

1Note that this is merely illustrative. In fact we treat D by the
exact expression for the distance to the last scattering surface, i.e.,
Eq. (1) generalized to evolving w(z).

0 0.5 1 1.5 2
z

0.001

0.01
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σ w
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SNe + Planck
SNe + σΩ

M
= 0

SNe + σΩ
M
= 0.03

SNe + Planck + sys
SNe + σΩ

M
= 0.03 + sys

FIG. 2: The predicted 1-σ uncertainty in the equation-
of-state parameter w for 3000 SNe at a single redshift z,
with matter density and CMB priors as indicated (and
the same fiducial model as in Fig. 1). The dotted curve
in each case includes the effect of a 0.02 mag irreducible
systematic error in measuring the energy flux. The pro-
gression from “solid to dashed to dotted” goes from “ideal
to realistic.”

dark energy equation-of-state, assuming w = const. If
the CMB measurement of D is assumed to be “perfect”
(σD = 0) as was done in Ref. [11], the predicted σw drops
significantly with increasing redshift and continues to do
so out to z ≈ 1.5. The effect of a “perfect” matter den-
sity prior (σΩM = 0) is similar. This qualitative behavior
can be understood by referring to Fig. 1 and considering
the intersection of the CMB line (now an infinitely thin
ellipse) with the SNe ellipses or of a vertical line (fixed
ΩM ) with the SNe ellipses. The decreasing width of the
SNe ellipses wins out over the decreasing complementar-
ity at higher redshift.

The qualitative behavior changes, however, when finite
precision for the CMB and matter density measurements
is taken into account; as examples, for the CMB we use
the projected Planck accuracy discussed above, and for
the matter density we assume σΩM = 0.03. Not only
is the uncertainty σw larger in these cases, but it now
reaches a minimum at z ∼ 0.2 and rises slightly at higher
redshift. For finite widths of the matter density or CMB
priors, the decreasing complementarity now wins out over
the decreasing width of the SNe ellipse with increasing
redshift.

Thus far, we have not allowed for systematic error in
measuring the supernova flux at a given redshift. This
means that by measuring a large number of supernovae
at a given redshift, the flux and thereby r(z) can be de-
termined to arbitrarily high accuracy. In reality, the
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presence of residual systematic uncertainty is likely to
impose a floor to improvement. As a simple model for
irreducible systematic error in the SNe measurements,
we assume the flux error in a specified redshift interval
is given by

√
(0.02)2 + (0.15)2/Ni mag, where 0.15 mag

is the assumed statistical error per SN, 0.02 mag is the
irreducible error,2 and Ni is the number of supernovae
observed in that redshift interval. This model penal-
izes observing large numbers of SNe at the same redshift
since the irreducible error adds to the Poisson error: one
reaches diminishing returns for Ni ∼ 100, at which point
the error is only ∼ 20% larger than its asymptotic value.
While this model is certainly simplistic, it captures in a
straightforward way the essential point: increasing the
number of SNe cannot decrease the measured error in
H0r(zi) to arbitrarily small values [23].

Figure 2 illustrates the effect of systematic error. At
redshifts less than about z ∼ 0.5, systematic error in-
creases σw significantly: without the irreducible flux er-
ror, the estimate for σw was optimistically small because
the flux error was allowed to decrease to a tiny value
(∼ 0.003 mag). With systematic flux error included, the
predicted error in w from a combined Planck CMB mea-
surement and a hypothetical sample of 3000 SNe (all at
redshift z) flattens at z ∼ 1, with an asymptotic ampli-
tude σw ' 0.05.

As noted in Sec. II, realistic survey would not target
supernovae all at a single redshift, as assumed up to now.
Moreover, since the orientation of the SN error ellipse in
the ΩM–w plane rotates with z (see Fig. 1), a spread of
SNe redshifts helps break the degeneracy between ΩM

and w. In the next Section, we consider more realistic
strategies for the supernova redshift distribution to opti-
mally probe dark energy.

IV. STRATEGIES FOR CMB/SNE
COMPLEMENTARITY

A Optimal

The issue of optimal strategies for determining dark
energy properties using SNe in a realistic experiment has
been addressed in Refs. [10, 24]. Here, we extend these
results to incorporate CMB anisotropy and other mea-
surements.

2In practice, the level of the residual systematic error depends
on survey design, e.g., telescope aperture and stability, wavelength
coverage, observing cadence, point spread function, seeing, sky
background, etc. The systematic error quoted here is based on
the fact that SNAP is specifically designed to achieve 0.02 mag
systematic error in redshift bins of width ∆z = 0.1.
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optimal, SNe + σD = 0
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FIG. 3: Optimal redshift distributions in bins of width
∆z = 0.1 for determining w from SNe alone (red) and
with CMB information added (green and blue). All cases
assume zmax = 1.7 and no systematic error. The per-
fect CMB prior (blue, σD = 0) is a “strong” prior: the
optimal distribution comprises two delta functions; the
Planck CMB prior (green) is not “strong”, as three delta
functions remain. For comparison, the black histogram
shows a “fiducial” SNAP + SN Factory redshift distri-
bution with 2812+300 SNe.

1 No systematic error

The optimization problem can be stated as follows:
we have three cosmological parameters (M, ΩM , and w;
later we will add a fourth, dw/dz); we have “prior infor-
mation” (from the CMB anisotropy and/or an indepen-
dent determination of ΩM ); and we wish to determine
the redshift distribution of the SNe which minimizes the
error on w, with the constraint that they are confined to
the interval [0, zmax]. For now, we assume that the total
number of observed SNe is held fixed, and we do not in-
clude systematic error in the SNe measurements. Later
we will relax both of these assumptions.

Huterer & Turner [10] showed that for the N -
parameter problem with no priors, the optimal redshift
distribution comprises N delta functions, with one at
z = 0, one at zmax, and the others in between. The
amplitudes of the delta functions and their positions rel-
ative to zmax vary little with the value of zmax.3 Adding
a “strong” prior on one, or a combination, of the three

3The optimization can be done with respect to the errors of
the individual parameters or the determinant of the Fisher matrix
(“area of error ellipse” for the two-parameter problem). The results
in the two cases are similar. We will minimize σw unless otherwise
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FIG. 4: Same as Fig. 3, except with matter density
priors of σΩM = 0.03 (blue), 0.01 (green), and 0.005
(yellow). The matter density prior is only “strong” for
σΩM ≤ 0.005. For a strong matter-density prior, the
delta function at zmax disappears because the highest
redshift SNe preferentially probe the matter density.

parameters reduces the number of delta functions by one,
adding two “strong” priors reduces the number of delta
functions by two, and so on. A “strong” prior is one that
constrains one, or a combination, of the three parameters
better than the SNe measurements alone would. In ac-
tuality, this is a continuous process, with the amplitude
of one of the delta functions going to zero as the quality
of the prior improves. Further, for smaller zmax it is eas-
ier to have a “strong” prior, since the SNe constrain the
parameters less well.

For illustration we consider a survey of about 3000
SNe with survey depth zmax = 1.7. These choices are
motivated by the proposed SNAP survey [19] and thus
provide a useful benchmark (SNAP should obtain 3000
Type Ia SNe in about two years of observations). Figure 3
shows the optimal SNe redshift distribution with no CMB
prior, a perfect CMB prior (σD = 0), and the Planck
prior (see Sec. III). For comparison, we also show one of
the redshift distributions currently proposed for SNAP
(2812 SNe in the redshift interval 0.1 − 1.7) combined
with that for the Nearby SN Factory (300 SNe at z <
0.1). We see that a “perfect” CMB prior is a “strong”
prior: the optimal SNe distribution in this case becomes
two delta functions, one at z = 0 and one at z = zmax.
The Planck prior is not strong: in this case, three delta
functions remain, at z = 0, 0.5, and 1.7. Figure 4 shows

noted.

the optimal SNe redshift distribution using ΩM instead
of CMB priors, with σΩM = 0.005, 0.01, and 0.03. The
ΩM prior is only “strong” for σΩM ≤ 0.005.

In Figs. 3 and 4, the z ∼ 0 peaks in the optimal
distributions serve mainly to determine M. Indeed,
the Nearby SN Factory redshift distribution is strongly
peaked at z ≈ 0.05, in part for this reason.4 We could
have simply imposed a prior on M instead of including
this portion of the redshift distribution.

Finally, it is important to consider how much improve-
ment the optimal redshift distribution actually provides
compared to a uniform distribution or the SNAP+SN
Factory distribution: for the cases shown in Figs. 3 and
4, σw is typically 20% to 30% smaller for the optimal
distribution.

2 Inclusion of systematic error and evolution of w

Now we consider the effect of systematic flux error on
the optimal SNe redshift distribution. As before, we use
the simple model of an irreducible flux error of 0.02 mag
in each redshift interval of width ∆z = 0.1. We should
expect that this will broaden the optimal distribution,
since it is more expedient to spread the remaining SNe
to other redshift bins once the error in a given bin be-
comes comparable to the irreducible error. Figs. 5 and
6 show the optimal SNe redshift distributions, with and
without CMB and ΩM priors, in the presence of sys-
tematic errors. Figs. 5a and 6a show results for the
w = const case as before, while Figs. 5b and 6b allow
for evolution of the equation-of-state, w(z) = w0 + w1z,
with w1 = dw/dz|z=0. Comparison of Figs. 5a and 6a
with Figs. 3 and 4 shows that inclusion of systematic er-
ror indeed changes the optimal distribution significantly,
broadening it to become more uniform.

For the case of constant w (Figs. 5a and 6a), the gain
in performance for the optimal SNe distribution vs. a
uniform or SNAP+SN Factory distribution is reduced to
only 3−5% when systematic errors are included. We find
that a number of qualitatively different redshift distribu-
tions yield essentially the same value of σw. In particular,
in this case σw is relatively insensitive to zmax: there ex-
ist distributions with no SNe at z > 1 which yield σw
only 3% larger than the optimal value (see also Fig. 7
below).

The situation is markedly different if we allow for time
variation in the equation-of-state. In Figs. 5b and 6b,
we show the distributions that minimize σw1 (the results
are almost identical if σw0 is minimized instead). In the
presence of CMB or matter density priors, the optimal
distributions now include larger numbers of SNe at high

4The SN Factory has another important purpose: the system-
atic study of Type Ia SNe to better establish their efficacy as stan-
dardizable candles.
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FIG. 5: Optimal redshift distributions for determining w
by 3000 SNe measurements alone (red solid line) and for
3000 SNe + Planck CMB measurements (cyan dashed
line), with zmax = 1.7 and including systematic error.
For comparison, the black histogram shows the fidu-
cial SNAP + SN Factory redshift distribution. Bins of
width ∆z ≈ 0.25 are used solely for numerical conve-
nience. (a) Constant w; (b) evolving equation-of-state,
w(z) = w0+w1z. The optimal distributions are no longer
sums of delta-functions when systematic error is taken
into account.

redshift. Furthermore, SNe in the high-redshift range
1 < z < 1.7 are crucial for precision constraints to w1,
even in the presence of a strong prior. For example, as
zmax increases from 1 to 1.7, σw1 decreases by more than
a factor of two, cf. Fig. 9.

3 Gains from complementarity

The preceding analysis shows that, for fixed zmax, the
error on w is only weakly dependent on the SNe red-
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FIG. 6: Same as Fig. 5, except for matter-density priors.

shift distribution: in the presence of systematic error,
distributions which are broadly spread over the range
0 < z < zmax differ only slightly in their performance.
Therefore the chief determinant of the error is zmax it-
self, and we now address how the efficacy of SNe with
complementary information depends on this maximum
redshift. In Fig. 7, we show the effect of various CMB
and matter density priors on the predicted value of σw vs.
zmax, assuming w = const, with systematic error mod-
eled as before and assuming a scaled version of the SNAP
+ SN Factory distribution of redshifts.5 (As noted above,
the optimal redshift distribution with the same value of
zmax would yield only slightly smaller σw.) Figure 7 also
includes the error on w for the case of no CMB prior or

5When varying zmax from its fiducial value of 1.7, we truncate
the fiducial SNAP distribution at the new zmax and scale it to
preserve the total of 2812 SNe. The SN Factory distribution is
then added unchanged – 300 SNe in the lowest redshift bin.
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knowledge of the matter density (black curve).
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FIG. 7: The predicted σw vs. SNe survey depth for
a combined set of experiments: (a) SNe only (black),
(b) SNe + MAP (temperature only) (maroon dashed),
(c) SNe + MAP (temperature and polarization) (orange
dotted), (d) SNe + (σΩM = 0.03) (green), (e) SNe +
(σΩM = 0.01) (red), (f) SNe + Planck (blue), and (g)
SNe + Planck + (σΩM = 0.01) (purple). In all cases, we
assume the scaled SNAP + SN Factory redshift distribu-
tion and an irreducible systematic error in flux measure-
ments of 0.02 mag in redshift bins ∆z = 0.1.

The primary effect of incorporating additional infor-
mation, from either the CMB or the matter density, is to
dramatically decrease σw at redshifts less than one and
thereby lessen the dependence of σw on zmax. With SNe
only, σw decreases from 0.8 to 0.15 as zmax is increased
from 0.5 to 1.5. With the Planck or matter density prior,
σw decreases less rapidly and levels off at z ∼ 1. Note
that the Planck prior is more effective than either matter
density prior shown. Even combining a σΩM = 0.01 prior
with Planck provides little improvement over the Planck
prior alone. Although an independent determination of
ΩM to ±0.03 can substantially improve the precision with
which w can be determined if zmax ≤ 1.5 [10], the Planck
CMB prior by itself does better by a factor of two.

As mentioned at the end of Sec. II, time variation in the
equation-of-state is generically expected and is a poten-
tially important discriminator between dark energy mod-
els. Allowing for evolution, with w(z) = w0 +w1z,

6 there
are now four parameters to determine: M,ΩM , w0,, and
w1. As Figs. 8 and 9 illustrate, without an additional

6As discussed in Ref. [10], the exact form chosen for the param-
eterization is not essential.
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FIG. 8: Same as Fig. 7, but for w0, where w(z) = w0 +
w1z. The curves for SNe + MAP are not shown.
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FIG. 9: Same as Fig. 7, but for w1 = (dw/dz)|z=0, where
w(z) = w0 + w1z. The curves for SNe + MAP are not
shown.

prior, SNe have little leverage on w0 and w1 [10, 25].
An independent determination of the matter density to
±0.03 – not much more stringent than already achieved:
0.04 [3] – would allow w0 and w1 to be determined to
precision of about ±0.1 and ±0.35 for zmax ∼ 1.7 [10].
The Planck prior is just as good as a σΩM = 0.03 matter
density prior for w0 (if zmax ≥ 1) and better for w1. Note
that the improvement with survey depth in σw1 (and to a
lesser extent σw0) continues out to zmax = 2 in all cases.
That is, even in the presence of complementary informa-
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tion from the CMB or the matter density, a SNe survey
aimed at detecting and constraining the evolution of the
dark energy equation-of-state should extend out to high
redshift, zmax ∼ 1.5− 2.

Thus far, our discussion of CMB anisotropy has been
confined to the Planck mission. It is also worth consid-
ering what can be learned from the ongoing MAP exper-
iment. As noted in Sec. II, with temperature anisotropy
measurements alone, MAP can determine D about 10
times less accurately than Planck, σD ' 0.3. In this
case, MAP provides a far less useful prior than the mat-
ter density prior σΩM = 0.03 (about a factor of two worse
for σw), cf. Fig. 7. Even if MAP can achieve its full
polarization capability (a factor of two improvement in
σD [17]), a MAP prior is still not as good as the matter
density prior σΩM = 0.03. Moreover, mapping the po-
larization anisotropy on large angular scales — where it
helps determine w indirectly, by imposing an upper limit
to the ionization optical depth τ — will be difficult in
the presence of polarized synchrotron radiation from the
Galaxy. Finally, we mention that while polarization mea-
surements also have the potential to improve the Planck
determination of D (by about 50%), this only improves
the joint SNe/CMB determination of w by about 15%.
The reason is simple: it is the width of the SNe error
ellipse that controls σw.

B Resource limited

In the analysis so far, we have assumed a fixed total
number of observed supernovae, NSN = 3112. However,
the resources required to discover and follow up a super-
nova depend in general upon its redshift. Thus, an im-
portant but more complicated problem involves the opti-
mization of the determination of dark energy parameters
with fixed total resources. Actually determining what
these fixed resources are (e.g., discovery time, follow-up
time, spectroscopy time) and how much each supernova
‘costs’ is beyond the scope of this paper (relevant ongo-
ing studies can be found at [19]). We note that these
costs will depend in detail upon a variety of technical
factors: telescope aperture, pixel size and number, CCD
quantum efficiency, sky brightness, atmospheric seeing
(for ground-based observations), required signal to noise,
etc.

As a highly simplified model, let the normalized cost of
each supernova observed at redshift z be (1+z)m, so that
the total cost of a survey that follows up N supernovae

is
∑N

i=1(1 + zi)
m. The problem is to find the optimal

SNe redshift distribution for fixed total resources (total
cost) R. For SNAP, the observing time cost for spec-
troscopy or photometry per supernova is estimated to
scale as (1 + z)6 for fixed signal to noise [19]. In the case
of wide field, multiplexing photometry that SNAP is de-
signed for, simultaneously discovering and following up
supernovae by repeatedly sweeping the same field could
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FIG. 10: The resource-optimized redshift distributions
for determining (constant) w by (a) SNe measurements
alone and (b) SNe + Planck, including systematic errors,
assuming the cost per supernova scales as (1 + z)m, for
m = 0, 3, 6. The fiducial SNAP + SN Factory distribu-
tion is shown for comparison.

reduce this by a large factor. To span the plausible range
of cost functions, we show results for m = 0, 3, and 6.

To fix the total resources R, we assume that there are
sufficient resources to carry out a survey of 3112 SNe with
the fiducial SNAP + SN Factory redshift distribution
shown, e.g., in Fig. 3. That is, for a given value of m, we
fix R by computing the total cost of the fiducial SNAP
+ SN Factory redshift distribution. Then we find the
SN redshift distribution that minimizes σw within the
resource constraint, i.e., for the same value of R. If we
place no upper bound on the number of SNe per redshift
bin, the number of SNe at low redshifts would be driven
to huge values as m is increased. Clearly a distribution
with many thousands of SNe in any redshift bin is not
experimentally realistic, and the systematic error makes
this an unwise choice: the gains in terms of reduced σw
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FIG. 11: Same as Fig. 10, but with w(z) = w0 + w1 z.

are negligible once the number of SNe per bin goes much
above 100. We therefore impose the further constraint
that the number of SNe per redshift bin of width 0.25
not exceed (a very generous) 1000.

The results for m = 0, 3, and 6 are shown in Figs. 10
and 11, again for zmax = 1.7, the same model for irre-
ducible systematic error as above, and either no prior
from the CMB (Figs. 10a, 11a) or the Planck prior
(Figs. 10b, 11b). In Fig. 10, we assume constant w, while
in Fig. 11 w can evolve. We note that the performance
of the optimal distribution in minimizing σw (or σw1)
is only 2 to 10% better than the SNAP + SN Factory
distribution in all cases.

Consider first the constant w case. Figure 10 shows
that, as m increases, SNe start filling up the lower red-
shift bins to the maximum allowed number; this con-
tinues until the resource limit is reached. While this is
strictly true for the Planck prior, with no prior a signif-
icant fraction of SNe remain in the highest redshift bin.
This behavior can be understood simply: without any
priors, the high redshift SNe are crucial for breaking the

degeneracy between ΩM and w (see Fig. 7); the addition
of the Planck prior partially breaks this degeneracy, and
the number of SNe in the highest redshift bin therefore
decreases.

The case of evolving w is qualitatively similar, with
one important difference: the high-z subsample of SNe
is always present in the optimal distribution, regardless
of the prior or the value of m. As Fig. 11 shows, the
highest redshift bin always has a significant number of
SNe (' 500), even for m = 6, when their cost is large.

Although the exact optimal distribution for a given
value of m, and the corresponding values of σw and σw1 ,
will depend in practice on details of the optimization —
the number of redshift bins and the maximum number
of SNe allowed per bin — some clear trends emerge from
this analysis. While the lower redshift bins become rel-
atively more populated in the optimal distributions (re-
flecting the lower cost of low-redshift SNe), the impor-
tance of high redshift supernovae remains: in all cases,
at least 800 SNe are at redshifts z > 1. For the constant
w case with no Planck prior, or for evolving w regardless
of prior, these high-redshift SNe are crucial to making
the error on w small enough to be useful.

Clearly we have just scratched the surface with regard
to resource-limited optimization; to proceed further, one
would need a much more quantitative description of the
resources available and the systematics.

V. SUMMARY AND CONCLUSIONS

Unraveling the nature of dark energy is one of the
outstanding challenges in physics and astronomy. De-
termining its properties is critical to understanding the
Universe and its destiny and may shed light on the funda-
mental nature of the quantum vacuum and perhaps even
of space-time. Type Ia supernovae and CMB anisotropy
can both probe the dark energy equation-of-state w, and
we have explored in detail the synergy between the two.
With the MAP mission in progress, the Planck mission
slated for launch in 2007, and the design of dedicated SN
surveys now underway, such a study is very timely.

CMB anisotropy alone cannot tightly constrain the
properties of dark energy because of a strong degener-
acy between the average equation-of-state and the matter
density. SNe can probe w with a precision that improves
significantly with knowledge of the matter density, be-
cause H0r(z) depends only upon w and ΩM . A key result
of this paper is that CMB anisotropy measurements by
the upcoming Planck mission have even more potential
for improving the ability of SNe to probe dark energy.
The reason is simple: in the ΩM–w plane (Fig. 1), the
CMB constraint is more complementary to the SNe con-
straint than is determination of ΩM .

Compared to the matter density prior σΩM = 0.03,
Planck CMB data reduce the predicted error σw (un-
der the assumption of constant w) by about a factor of
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two (Fig. 7). In probing possible variation of w with red-
shift, the Planck prior is also significantly better than the
same matter density prior (Fig. 9). Given the concern ex-
pressed by some (e.g., [25]) that a precise measurement
of the matter density independent of dark energy prop-
erties may be difficult, this is good news. On the other
hand, we find that even if MAP can successfully measure
polarization on large scales, its potential for complemen-
tarity with SNe falls short of that for Planck and is not
as good as the σΩM = 0.03 matter density prior.

We have also explored how the SNe determination of
the dark energy equation-of-state, with or without prior
information from the CMB or the matter density, de-
pends upon the redshift distribution of the survey, in-
cluding the effects of systematic error and a realistic
spread of SNe redshifts. For either constant or evolv-
ing w, the optimal strategy calls for significant numbers
of SNe above redshift z ∼ 1. For the constant w case
with no Planck prior, or for evolving w regardless of
prior, these high-redshift SNe are necessary for achiev-
ing σw < 0.1. Observing substantial numbers of SNe
at these high redshifts also provides the only hope of
probing time evolution of the equation-of-state with rea-
sonable precision. Moreover, the improvement in σdw/dz
continues to high redshift: σdw/dz falls by more than a
factor of two when zmax increases from 1 to 2 (Fig. 9).
Since we currently have no prior information about (or
consensus physical models which significantly constrain)
the time variation of w, the design of a SNe survey aimed
at probing dark energy should take into account the pos-
sibility that w evolves. These conclusions about the need
for high-redshift supernovae do not change significantly
if we consider a hypothetical survey for which resources
are constrained and a redshift-dependent cost is assigned
to each supernova.

Ref. [11] raised the question whether a shallow SNe
survey is better than a deep one in determining the dark
energy equation-of-state, given prior knowledge from the
CMB. Our results indicate that it is not, once the SNe
and CMB experiments are realistically modelled. On the
contrary, CMB/SNe complementarity strengthens the
case for a deep SNe survey that extends to redshift z ∼ 2.
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